Solutions to Assignment 2

1. Let $C_{2 \pi}^{\infty}$ be the class of all smooth 2π-periodic, complex-valued functions and \mathcal{C}^{∞} the class of all complex bisequences satisfying $c_{n}=\circ\left(n^{-k}\right)$ as $n \rightarrow \pm \infty$ for every k. Show that the Fourier transform $f \mapsto \hat{f}$ is bijective from $C_{2 \pi}^{\infty}$ to \mathcal{C}^{∞}.

Solution First, we show that the Fourier coefficients of a smooth, periodic function are rapidly decreasing. A repeated application of Problem 1 shows that $(i n)^{k} \hat{f}(n)$ is equal to the Fourier coefficients of $f^{(k)}$ for every k. In general, we have

$$
\begin{aligned}
|\hat{g}(n)| & =\frac{1}{2 \pi}\left|\int_{-\pi}^{\{\pi} g(x) e^{-i n x} d x\right| \\
& \leq \frac{1}{2 \pi} \int_{-\pi}^{\pi}|g(x)|\left|e^{-i n x}\right| d x \\
& \leq \frac{1}{2 \pi}\left|\int_{-\pi}^{\pi}\right| g(x)|d x| \equiv M(g),
\end{aligned}
$$

that is, the Fourier coefficients of any integrable function are always uniformly bounded. Now, for a fixed k, we have

$$
|\hat{f}(n)|=\left|\frac{1}{(i n)^{k}} \hat{\left.f^{\hat{k}}\right)}(n)\right| \leq \frac{M\left(f^{(k)}\right)}{n^{k}}
$$

so $\{\hat{f}(n)\}$ belongs to \mathcal{C}^{∞}.
Second, onto. Let $\left\{c_{n}\right\}$ be a rapidly decreasing bisequence. Define

$$
f(x) \equiv \sum_{-\infty}^{\infty} c_{n} e^{i n x}
$$

Taking $k=2$, we have

$$
\left|c_{n} e^{i n x}\right|=\left|c_{n}\right| \leq \frac{C}{n^{2}}
$$

for some constant C. By M-Test the right hand side in f is a uniformly convergent series of functions so f is well-defined. Furthermore, as uniform convergence preserves continuity, f is also continuous. By using M-Test to $\sum_{-\infty}^{\infty} i n c_{n} e^{i n x}$ (taking $k=3$), we see that it is also uniformly convergent. By one exchange theorem we learned in 2060 we conclude that f is differentiable and $f^{\prime}(x)=\sum_{-\infty}^{\infty} i n c_{n} e^{i n x}$. Repeating this argument we see that $f \in C_{2 \pi}^{\infty}$.
Third, one-to-one. By Theorem $1.7 f(x)=\sum_{-\infty}^{\infty} \hat{f}(n) e^{i n x}$ and $g(x)=\sum_{-\infty}^{\infty} \hat{g}(n) e^{i n x}$. When $\hat{f}(n)=\hat{g}(n)$, it is obvious that $f \equiv g$.
2. Propose a definition for $\sqrt{d / d x}$. This operator should be a linear map which maps $C_{2 \pi}^{\infty}$ to itself satisfying

$$
\sqrt{\frac{d}{d x}} \sqrt{\frac{d}{d x}} f=\frac{d}{d x} f
$$

for all smooth, 2π-periodic f.
Solution Use complex notation. For a smooth function f,

$$
\begin{equation*}
\widehat{f}^{\prime}(n)=i n \hat{f}(n) \tag{1}
\end{equation*}
$$

In view of $i=e^{i \pi / 2}$, this motivates us to define $g(x)=\sqrt{d / d x} f(x)$ to be the function whose Fourier series is given by

$$
\hat{g}(n)=c_{n}=e^{i \pi / 4} \sqrt{n} \hat{f}(n)
$$

That is,

$$
g(x)=\sum_{n=-\infty}^{\infty} e^{i \pi / 4} \sqrt{n} \hat{f}(n) e^{i n x}
$$

When $f \in C_{2 \pi}^{\infty}$, by Problem 5 in Assignment 1 (see also the previous problem), it is easy to see that the series in the right hand side of g defines again a smooth and 2π-periodic function, and the convergence is uniform. Hence $\sqrt{d / d x}$ is a linear map on $C_{2 \pi}^{\infty}$ to itself. Writing $h(x)=\sqrt{\frac{d}{d x}} \sqrt{\frac{d}{d x}} f(x)$, then

$$
\hat{h}(n)=e^{i \pi / 4} \sqrt{n} \hat{g}(n)=e^{i \pi / 4} \sqrt{n} e^{i \pi / 4} \sqrt{n} \hat{f}(n)=(i n) \hat{f}(n)
$$

By the the uniqueness of the Fourier series, one has

$$
\sqrt{\frac{d}{d x}} \sqrt{\frac{d}{d x}} f=\frac{d}{d x} f
$$

This problem demonstrates the power of Fourier series. It is hopeless to define fractional derivative on the function directly.

3 . Let f be a continuous, 2π-periodic function and its primitive function be given by

$$
F(x)=\int_{0}^{x} f(x) d x
$$

Show that F is 2π-periodic if and only if f has zero mean. In this case,

$$
\hat{F}(n)=\frac{1}{i n} \hat{f}(n), \quad \forall n \neq 0
$$

Solution. From

$$
\begin{aligned}
F(x+2 \pi) & =\int_{0}^{x+2 \pi} f(y) d y \\
& =\int_{0}^{2 \pi} f(y) d y+\int_{2 \pi}^{x+2 \pi} f(y) d y \\
& =\int_{0}^{2 \pi} f(y) d y+\int_{0}^{x} f(y) d y \\
& =\int_{0}^{2 \pi} f(y) d y+F(x)
\end{aligned}
$$

it is clear that F is of period 2π if and only if f has zero mean. The formula comes by easily.
4. Let \mathcal{C}^{\prime} be the subspace of \mathcal{C} consisting of all bisequences $\left\{c_{n}\right\}$ satisfying $\sum_{-\infty}^{\infty}\left|c_{n}\right|^{2}<\infty$.
(a) For $f \in R[-\pi, \pi]$, show that

$$
2 \pi \sum_{-\infty}^{\infty}\left|c_{n}\right|^{2} \leq \int_{-\pi}^{\pi}|f|^{2}
$$

(b) Deduce from (a) that the Fourier transform $f \mapsto \hat{f}(n)$ maps $R_{2 \pi}$ into \mathcal{C}^{\prime}.
(c) Explain why the trigonometric series

$$
\sum_{n=1}^{\infty} \frac{\cos n x}{n^{\alpha}}, \quad \alpha \in(0,1 / 2]
$$

is not the Fourier series of any function in $R_{2 \pi}$.
Solution. (a) Using $\left(f(x)-\sum_{k=-n}^{n} c_{k} e^{i k x}\right) \overline{\left(f(x)-\sum_{k=-n}^{n} c_{k} e^{i k x}\right)} \geq 0$ for all n and x,

$$
\begin{aligned}
0 & \leq \int\left(f(x)-\sum_{k=-n}^{n} c_{k} e^{i k x}\right) \overline{\left(f(x)-\sum_{k=-n}^{n} c_{k} e^{i k x}\right)} d x \\
& =\int\left(f(x)-\sum_{k=-n}^{n} c_{k} e^{-i k x}\right)\left(\overline{f(x)}-\sum_{j=-n}^{n} \overline{c_{j}} e^{-i j x}\right) d x \\
& =\int\left(|f(x)|^{2}-\sum_{j=-n}^{n} f(x) \overline{c_{j}} e^{-i j x}-\sum_{k=-n}^{n} \overline{f(x)} c_{k} e^{i k x}+\sum_{j, k=-n}^{n} c_{j} \overline{c_{k}} e^{i(j-k) x}\right) d x \\
& =\int\left(|f(x)|^{2}-2 \pi \sum_{k=-n}^{n}\left|c_{k}\right|^{2}\right) d x,
\end{aligned}
$$

by the orthogonality of $e^{-i k x}$'s. The desired inequality follows by letting n go to infinity.
(b) It is clear from (a).
(c) From $\sum\left|c_{n}\right|^{2}<\infty$ one deduces that $\sum a_{n}^{2}, \sum b_{n}^{2}<\infty$ also hold when the function is of real-valued. Now, if the given trigonometric series come from an integrable function, then $\sum a_{n}^{2}=\sum \frac{1}{n^{2 \alpha}}$ must be finite. But now it is not when $\alpha \in(0,1]$. We conclude that it is not a Fourier series.

